Assignment Method Scheduling

  • Personal Finance

    Alternate Methods Of Online Payment

    Paying by credit is one of the most common methods of payment for online shopping in the U.S. However, there are many other options worth testing out.

  • Financial Advisor

    An Introduction to Asset Allocation

    A portfolio is only as strong as its asset allocation. To create the right one, investors need to determine their risk tolerance, time horizon and goals.

  • Investing

    How to Choose the Best Stock Valuation Method

    Don't be overwhelmed by the many valuation techniques out there - knowing a few characteristics about a company will help you pick the best one.

  • Investing

    The Basics of How Mutual Funds Are Rated

    Learn how the major rating agencies assign mutual fund ratings. Understand what these ratings measure and how they are different from each other.

  • Financial Advisor

    Which Economy Is Larger - The United States or China?

    China's economy may be larger than the U.S. economy, but it all depends on which exchange rate method you use to make the GDP comparisons.

  • Investing

    What Is Tactical Asset Allocation?

    Here's how tactical asset allocation, an extension of strategic asset allocation, works.

  • Investing

    Mark-To-Market: Tool Or Trouble?

    Mark-to-market accounting can be a valuable practice, but all bets are off when the market fluctuates wildly.

  • Small Business

    Time Management Practices to Master Before Starting Your Own Business

    Learn how Pareto analysis, the ABC method, the Eisenhower method and the POSEC method can help small business owners effectively manage their time.

  • Investing

    Strategic Asset Allocation to Rebalance Portfolios

    This involves setting allocations for various asset classes, then yearly rebalancing the portfolio when it deviates from the initial settings.

  • Investing

    Natural Resource Investing

    ETFs and futures are just some of the various investment options available to natural resource investors.

  • 1.

    Baptiste, P., Laborie, P., Le Pape, C., & Nuijten, W. (2006). Constraint-based scheduling and planning. Foundations of Artificial Intelligence, 2, 761–799.CrossRefGoogle Scholar

  • 2.

    Baptiste, P., & Le Pape, C. (1996). Disjunctive constraints for manufacturing scheduling: Principles and extensions. International Journal of Computer Integrated Manufacturing, 9(4), 306–310.CrossRefGoogle Scholar

  • 3.

    Baptiste, P., Le Pape, C., & Nuijten, W. (2001). Constraint-based scheduling. Kluwer Academic Publishers.Google Scholar

  • 4.

    Barták, R., & Cepek, O. (2008). Nested precedence networks with alternatives: Recognition, tractability, and models. In Proc. of AIMSA (pp. 235–246).Google Scholar

  • 5.

    Barták, R., Cepek, O., & Surynek, P. (2007). Modelling alternatives in temporal networks. In Proc. of IEEE SCIS (pp. 129–136).Google Scholar

  • 6.

    Barták, R., Čepek, O., & Hejna, M. (2008). Temporal reasoning in nested temporal networks with alternatives. Recent Advances in Constraints, LNCS, 5129, 17–31.CrossRefGoogle Scholar

  • 7.

    Barták, R., Čepek, O., & Surynek, P. (2008). Discovering implied constraints in precedence graphs with alternatives. Annals of Operations Research, 180(1):233–263.CrossRefGoogle Scholar

  • 8.

    Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16(1), 199–240.CrossRefGoogle Scholar

  • 9.

    Beale, E. M. L., & Forrest, J. J. H. (1976). Global optimization using special ordered sets. Mathematical Programming, 10(1), 52–69.MathSciNetMATHCrossRefGoogle Scholar

  • 10.

    Beasley, J. E., & Krishnamoorthy, M. (2000). Scheduling aircraft landings-the static case. Transportation Science, 34(2), 180–197.MATHCrossRefGoogle Scholar

  • 11.

    Beck, J. C., & Fox, M. S. (1999). Scheduling alternative activities. In Proc. of AAAI/IAAI (pp. 680–687).Google Scholar

  • 12.

    Beck, J. C., & Fox, M. S. (2000). Constraint-directed techniques for scheduling alternative activities. Artificial Intelligence, 121(1–2), 211–250.MathSciNetMATHCrossRefGoogle Scholar

  • 13.

    Beldiceanu, N., Carlsson, M., Demassey, S., & Poder, E. (2011). New filtering for the cumulative constraint in the context of non-overlapping rectangles. Annals of Operations Research, 184(1), 27–50.MathSciNetMATHCrossRefGoogle Scholar

  • 14.

    Bellenguez-Morineau, O., & Néron, E. (2007). A Branch-and-Bound method for solving multi-skill project scheduling problem. RAIRO - Operations Research, 41(02), 155–170.MathSciNetMATHCrossRefGoogle Scholar

  • 15.

    Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.MathSciNetMATHCrossRefGoogle Scholar

  • 16.

    Benini, L., Bertozzi, D., Guerri, A., & Milano, M. (2005). Allocation and scheduling for MPSoCs via decomposition and no-good generation. In Proc. of CP (pp. 107–121).Google Scholar

  • 17.

    Benini, L., Lombardi, M., Milano, M., & Ruggiero, M. (2011). Optimal allocation and scheduling for the cell BE platform. Annals of Operations Research, 184(1), 51–77.MathSciNetMATHCrossRefGoogle Scholar

  • 18.

    Brucker, P., Drexl, A., Möhring, R. H., Neumann, K., & Pesch, E. (1999). Resource-constrained project scheduling: Notation, classification, models, and methods. European Journal of Operational Research, 112(1), 3–41.MATHCrossRefGoogle Scholar

  • 19.

    Buddhakulsomsiri, J., & Kim, D. (2006). Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. European Journal of Operational Research, 175(1), 279–295.MATHCrossRefGoogle Scholar

  • 20.

    Burkard, R. E., Dell’Amico, M., & Martello, S. (2009). Assignment problems. Society for Industrial Mathematics.Google Scholar

  • 21.

    Cambazard, H., Hladik, P. E., Déplanche, A. M., Jussien, N., & Trinquet, Y. (2004). Decomposition and learning for a hard real time task allocation problem. In Proc. of CP (pp. 153–167).Google Scholar

  • 22.

    Cesta, A., Oddi, A., & Smith, S. F. (1998). Scheduling multi-capacitated resources under complex temporal constraints. In Proc. of CP (pp. 465–465).Google Scholar

  • 23.

    Christofides, N., Alvarez-Valdes, R., & Tamarit, J. M. (1987). Project scheduling with resource constraints: A branch and bound approach. European Journal of Operational Research, 29(3), 262–273.MathSciNetMATHCrossRefGoogle Scholar

  • 24.

    Coban, E., & Hooker, J. N. (2010). Single-facility scheduling over long time horizons by logic-based benders decomposition. In Proc. of CPAIOR (pp. 87–91).Google Scholar

  • 25.

    De Reyck, B., Demeulemeester, E., & Herroelen, W. (1998). Local search methods for the discrete time/resource trade-off problem in project networks. Naval Research Logistics, 45(6), 553–578.MathSciNetMATHCrossRefGoogle Scholar

  • 26.

    Deblaere, F., Demeulemeester, E., & Herroelen, W. (2010). Reactive scheduling in the multi-mode RCPSP. Computers & Operations Research, 38(1), 1–12.MathSciNetGoogle Scholar

  • 27.

    Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49(1–3), 61–95.MathSciNetMATHCrossRefGoogle Scholar

  • 28.

    Demeulemeester, E., De Reyck, B., & Herroelen, W. (2000). The discrete time/resource trade-off problem in project networks: A branch-and-bound approach. IIE Transactions, 32(11), 1059–1069.Google Scholar

  • 29.

    Demeulemeester, E. L., & Herroelen, W. (1992). A branch-and-bound procedure for multiple resource-constrained project scheduling problem. Management Science, 38(12), 1803–1818.MATHCrossRefGoogle Scholar

  • 30.

    Drexl, A., & Gruenewald, J. (1993). Nonpreemptive multi-mode resource-constrained project scheduling. IIE Transactions, 25(5), 74–81.CrossRefGoogle Scholar

  • 31.

    Elmaghraby, S. E. (1977). Activity networks: Project planning and control by network models. New York: Wiley.MATHGoogle Scholar

  • 32.

    Elmaghraby, S. E., & Kamburowski, J. (1992). The analysis of activity networks under generalized precedence relations (GPRs). Management Science, 38(9), 1245–1263.MATHCrossRefGoogle Scholar

  • 33.

    Ernst, A.T., Krishnamoorthy, M., & Storer, R.H. (1999). Heuristic and exact algorithms for scheduling aircraft landings. Networks, 34(3), 229–241.MATHCrossRefGoogle Scholar

  • 34.

    Focacci, F., Laborie, P., & Nuijten, W. (2000). Solving scheduling problems with setup times and alternative resources. In Proc. of ICAPS.Google Scholar

  • 35.

    Focacci, F., Lodi, A., & Milano, M. (1999). Cost-based domain filtering. In Proc. of CP (pp. 189–203).Google Scholar

  • 36.

    Gambardella, L. M., & Mastrolilli, M. (1996). Effective neighborhood functions for the flexible job shop problem. Journal of Scheduling, 3, 3.Google Scholar

  • 37.

    Harjunkoski, I., Jain, V., & Grossman, I. E. (2000). Hybrid mixed-integer/constraint logic programming strategies for solving scheduling and combinatorial optimization problems. Computers & Chemical Engineering, 24(2–7), 337–343.CrossRefGoogle Scholar

  • 38.

    Hartmann, S., & Drexl, A. (1998). Project scheduling with multiple modes: A comparison of exact algorithms. Networks, 32(4), 283–297.MathSciNetMATHCrossRefGoogle Scholar

  • 39.

    Heilmann, R. (2003). A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lags. European Journal of Operational Research, 144(2), 348–365.MathSciNetMATHCrossRefGoogle Scholar

  • 40.

    Hooker, J. (2000). Logic-based methods for optimization: Combining optimization and constraint satisfaction. New York: Wiley.MATHCrossRefGoogle Scholar

  • 41.

    Hooker, J. N. (2005). A hybrid method for planning and scheduling. Constraints, 10(4), 385–401.MathSciNetMATHCrossRefGoogle Scholar

  • 42.

    Hooker, J. N. (2005). Planning and scheduling to minimize tardiness. In Proc. of CP (Vol. 3709, pp. 314–327).Google Scholar

  • 43.

    Hooker, J. N. (2006). An integrated method for planning and scheduling to minimize trdiness. Constraints, 11(2–3), 139–157.MathSciNetMATHCrossRefGoogle Scholar

  • 44.

    Hooker, J. N. (2007). Planning and scheduling by logic-based benders decomposition. Operations Research, 55(3), 588.MathSciNetMATHCrossRefGoogle Scholar

  • 45.

    Hooker, J. N., & Ottosson, G. (2003). Logic-based Benders decomposition. Mathematical Programming, 96(1), 33–60.MathSciNetMATHGoogle Scholar

  • 46.

    Hooker, J. N., & Yan, H. (1995). Verifying logic circuits by Benders decomposition. In Proc. of CP (pp. 267–288).Google Scholar

  • 47.

    Igelmund, G., & Radermacher, F. J. (1983). Preselective strategies for the optimization of stochastic project networks under resource constraints. Networks, 13(1), 1–28.MathSciNetMATHCrossRefGoogle Scholar

  • 48.

    Jain, V., & Grossmann, I. E. (2001). Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS Journal on Computing, 13(4), 258–276.MathSciNetCrossRefGoogle Scholar

  • 49.

    Kelley, J.E., & Walker, M. R. (1959) Critical-path planning and scheduling. In Proc. of eastern joint IRE-AIEE-ACM conference (pp. 160–173). ACM: New York.Google Scholar

  • 50.

    Kolisch, R. (1997). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205–216.CrossRefGoogle Scholar

  • 51.

    Kolisch, R., & Drexl, A. (1997). Local search for nonpreemptive multi-mode resource-constrained project scheduling. IIE Transactions, 29(11), 987–999.Google Scholar

  • 52.

    Kwok, Y. K. (1996). Dynamic critical-path scheduling: An effective technique for allocating task graphs to multiprocessors. Parallel and Distributed Systems, IEEE, 7(5), 506–521.CrossRefGoogle Scholar

  • 53.

    Kwok, Y. K., & Ahmad, I. (1999). Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4), 406–471.CrossRefGoogle Scholar

  • 54.

    Laborie, P. (2005). Complete MCS-based search: Application to resource constrained project scheduling. In Proc. of IJCAI (pp. 181–186). Professional Book Center.Google Scholar

  • 55.

    Laborie, P. (2009). IBM ILOG CP optimizer for detailed scheduling illustrated on three problems. In Proc. of CPAIOR (pp. 148–162).Google Scholar

  • 56.

    Laborie, P., & Godard, D. (2007). Self-adapting large neighborhood search: Application to single-mode scheduling problems. In Proc. of MISTA.Google Scholar

  • 57.

    Laborie, P., & Rogerie, J. (2008). Reasoning with conditional time-intervals. In Proc. of FLAIRS (pp. 555–560).Google Scholar

  • 58.

    Laborie, P., Rogerie, J., Shaw, P., & Vilìm, P. (2009). Reasoning with conditional time-intervals part II: An algebraical model for resources. In Proc. of FLAIRS (pp. 201–206).Google Scholar

  • 59.

    Le Pape, C. (1994). Using a constraint-based scheduling library to solve a specific scheduling problem. In Proc. of AAAI-SIGMAN.Google Scholar

  • 60.

    Le Pape, C., Couronné, P., Vergamini, D., & Gosselin, V. (1994). Time-versus-capacity compromises in project scheduling. In Proc. of PLANSIG.Google Scholar

  • 61.

    Leupers, R. (2000). Instruction scheduling for clustered VLIW DSPs. In Proc. of PACT (pp. 291–).Google Scholar

  • 62.

    Lombardi, M., & Milano, M. (2009). A precedence constraint posting approach for the RCPSP with time lags and variable durations. In Proc. of CP (pp. 569–583).Google Scholar

  • 63.

    Lombardi, M., & Milano, M. (2010). Allocation and scheduling of conditional task graphs. Artificial Intelligence, 174(7–8), 500–529.MathSciNetMATHCrossRefGoogle Scholar

  • 64.

    Moffitt, M. D., Peintner, B., & Pollack, M. E. (2005). Augmenting disjunctive temporal problems with finite-domain constraints. In Proc. of AAAI (pp. 1–6).Google Scholar

  • 65.

    Nuijten, W. (1994). Time and resource constrained scheduling: A constraint satisfaction approach. PhD thesis, Technische Universiteit Eindhoven.Google Scholar

  • 66.

    Nuijten, W., Bousonville, T., Focacci, F., Godard, D., & Le Pape, C. (2004). Towards an industrial manufacturing scheduling problem and test bed. In Proc. of PMS.Google Scholar

  • 67.

    Nuijten, W. P. M., Aarts, E. H. L., van Arp Talmaan Kip, D.A.A., & van Hee, K.M. (1993). Randomized constraint satisfaction for job shop scheduling. In Proc. of IJCAI (pp. 251–262). Chambery, France.Google Scholar

  • 68.

    Patterson, J.H., Slowinski, R., Talbot, F.B., & Weglarz, J. (1989). An algorithm for a general class of precedence and resource constrained scheduling problems. In R. Slowinski & J. Weglarz (Eds.), Advances in Project Scheduling (Part I, Chapter I, pp. 3–28). Amsterdam: Elsevier Science Publishers.Google Scholar

  • 69.

    Pessan, C., Bellenguez-Morineau, O., & Néron, E. (2007). Multi-skill project scheduling problem and total productive maintenance. In Proceedings of MISTA (pp. 608–610).Google Scholar

  • 70.

    Poder, E., & Beldiceanu, N. (2008). Filtering for a continuous multi-resources cumulative constraint with resource consumption and production. In Proc. of ICAPS (pp. 264–271).Google Scholar

  • 71.

    Policella, N., Cesta, A., Oddi, A., & Smith, S. F. (2007). From precedence constraint posting to partial order schedules: A CSP approach to robust scheduling. AI Communications, 20(3), 163–180.MathSciNetMATHGoogle Scholar

  • 72.

    Radermacher, F. J. (1985). Scheduling of project networks. Annals of Operations Research, 4(1), 227–252.MathSciNetMATHCrossRefGoogle Scholar

  • 73.

    Ruggiero, M., Pari, G., Guerri, A., Benini, L., Milano, M., Bertozzi, D., et al. (2007). A cooperative, accurate solving framework for optimal allocation, scheduling and frequency selection on energy-efficient mpsocs. In Proc. of SoC (pp. 1–4). IEEE.Google Scholar

  • 74.

    Sabzehparvar, M., & Seyed-Hosseini, S. M. (2007). A mathematical model for the multi-mode resource-constrained project scheduling problem with mode dependent time lags. The Journal of Supercomputing, 44(3), 257–273.CrossRefGoogle Scholar

  • 75.

    Schutt, A., Feydy, T., Stuckey, P.J., & Wallace, M. (2009). Why cumulative decomposition is not as bad as it sounds. In Proc. of CP (pp. 746–761).Google Scholar

  • 76.

    Schwindt, C. (1998). Verfahren zur Lösung des ressourcenbeschränkten Projektdauerminimierungsproblems mit planungsabhängigen Zeitfenstern. Shaker.Google Scholar

  • 77.

    Smith, S. F., Cheng, C. C. (1993). Slack-based heuristics for constraint satisfaction scheduling. In Proc. of AAAI (pp. 139–139).Google Scholar

  • 78.

    Kedad-Sidhoum, S., Solis, Y. R., & Sourd, F. (2008). Lower bounds for the earliness–tardiness scheduling problem on parallel machines with distinct due dates. European Journal of Operations Research, 189(3), 1305–1316.MathSciNetMATHCrossRefGoogle Scholar

  • 79.

    Sprecher, A., & Drexl, A. (1998). Multi-mode resource-constrained project scheduling by a simple, general and powerful sequencing algorithm. European Journal of Operational Research, 107(2), 431–450.MATHCrossRefGoogle Scholar

  • 80.

    Sprecher, A., Hartmann, S., & Drexl, A. (1997). An exact algorithm for project scheduling with multiple modes. OR Spectrum, 19(3), 195–203.MathSciNetMATHCrossRefGoogle Scholar

  • 81.

    Sprecher, A., & Hwang, C. L. (1994). Resource-constrained project scheduling: Exact methods for the multi-mode case. New York: Springer.MATHGoogle Scholar

  • 82.

    Sprecher, A., Kolisch, R., & Drexl, A. (1995). Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. European Journal of Operational Research, 80(1), 94–102.MATHCrossRefGoogle Scholar

  • 83.

    Stinson, J. P., Davis, E. W., & Khumawala, B. M. (1978). Multiple resource-constrained scheduling using branch and bound. IIE Transactions, 10(3), 252–259.Google Scholar

  • 0 thoughts on “Assignment Method Scheduling”


    Leave a Comment

    Your email address will not be published. Required fields are marked *