Cenozoic Calcareous Nannoplankton Classification Essay

  • Aiello G. & Szczechura J. 2004: Middle Miocene ostracods of the Fore-Carpathian Depression (Central Paratethys, Southwestern Poland). Bolletino della Società Paleontologica Italiana 43, 1-2, 11-39. Google Scholar

  • Alexandrowicz S.W., Garlicki A. & Rutkowski J. 1982: The lithostratigraphic units of the Pericarpathian Miocene [Podstawowe jednostki litostratygraficzne miocenu zapadliska przedkarpackiego]. Kwart. Geolog. 26, 470-471 (in Polish). Google Scholar

  • Andrusov N. 1899: Die südrussichen Neogenablagerungen. 3-ter Theil. Die Verbreitung die Gliederung der Sarmatischen Stufe. Zapiski Imperatorskogo Sankt-Petersburkgskogo Mineralogicheskogo Obchestva (Verhandlungen der Kaiserlichen Russisch Mineralogischen Gesellschaft zu St. Petersburg, 2 serie, 36, 1, 101-70.Google Scholar

  • Atanasiu I. 1945: Le Sarmatien du Plateau Moldave. Acad. Rom. Mém. Sect. sci. 3, 20/5, 293-327. Google Scholar

  • Baldi T. 1980: The early history of the Paratethys [A koray Paratethys története]. Födtani Köszlöny 110, 456-472 (in Hungarian). Google Scholar

  • Barbot de Marny N.P. 1866: Über der jüngere Ablagerungen des südlichen Russland. Sitzungsbericht Wien. Akad. Wiss. Bd. III, Abt. 1, H. 4, 339-342. Google Scholar

  • Bobrinskaya O.G. 1967: The stratigraphy of the upper Tortonian deposits from the most northern part of Republic of Moldova. Bulletin of the Academy of Science of Modova. Paleontology and Stratigraphy 4, 81-87 (in Russian). Google Scholar

  • Bobrinskaya O.G. 1970: Foraminiferal assemblages from Republic of Moldova. In: Negadev-Nikonov K.N., David A.I., Rosca V.R., Danici M.M. & Polev P.V. (Eds.): Paleontolgy and Stratigraphy of the Mezozoic and Cainozoic deposits of Republic of Moldova. Academy of Science of Moldova, Chişinău, 184-195. Google Scholar

  • Bobrinskaya O.G. 1981: Foramininiferal associations from the Sarmatian sediments from the Republic of Moldova. The biostratigraphy of the Neogene and Quaternary from the south western part of the USSR [Kompleksi foraminifer v otlozheniakh sarmata Moldavii. Biostratigrafia antropogena i neogena iugo- zapada SSSR]. “Ştiinţa” Press, Chişinău, 68-78 (in Russian). Google Scholar

  • Bobrinskaya O.G. 1986: The stratigraphy of the lower Sarmatian deposits form the northern part of the Prut River [K stratigrafii nizhnesarmatskih otlozhenii severo-moldavskogo Priprutia]. In: Paleontological and Stratigraphical researches of the Mesozoic and Cenozoic between Nistru and Prut [Paleontologo-Stratigraficheskie issledovania Mezozoia i Kainozoia Nejdurecia Dnestr-Prut]. “Ştiinţa” Press, Chişinău, 53-65 (in Russian). Google Scholar

  • Bobrinskaya O.G. 2014: Distribution of the foraminifera from the Sarmatian deposits of Moldavian Platform. Bulletin of the Geological and Seismological Institute of Academy of Sciences of Moldova 1, 85-93. Google Scholar

  • Bobrinskaya O.G., Gruzman A.D., Krasheninnkov V.A., Serova M.J. & Venglinski I.V. 1998: Stratigraphy of the Oligocene and Miocene deposits of Western Ukraine and Moldova. In: Cicha I., Rögl F., Rupp C. & Ctyroka J. (Eds.): Oligocene-Miocene foraminifera of the Central Paratethys. Abhandlungen der senckenbergischenGoogle Scholar

  • naturforschenden gesellschaft 549, 34-43. Google Scholar

  • Boda J. 1974: Sarmatian stratigraphy in Hungary [A magyarországi szarmata emelet rétegtana]. Földtani Közlöny 104, 3, 249-260 (in Hungarian). Google Scholar

  • Brânzilă M. 1999: The geology of the southern part of the Moldavian Plain [Geologia părţii sudice a Câmpiei Moldove]. Corson Press, Iasi, 1-215 (in Romanian). Google Scholar

  • Brânzilă M. & Chira C. 2005: Microfossils assemblages from the Badenian/Sarmatian boundary in boreholes from the Moldavian Platform. Acta Plaeontologica Romaniae 5, 17-26. Google Scholar

  • Brânzilă M. & Mărunţeanu M. 2001: Calcareous nannoplankon associations in the North Eastern Moldavian Platform’s Sarmatian deposits. Scientific Annales of Alexandru Ioan Cuza Univeristy of Iaşi Geology 45-46, 287-294. Google Scholar

  • Brestenská E. 1974: Die Foraminiferen des Sarmatien s. str. In: Brestenská E. (Ed.): M5 Sarmatien (sensu E. Suess 1866). Die Sarmatische Schichtengruppe und ihr Stratotypus. Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys. Veda, Bratislava, 4, 243-293. Google Scholar

  • Cicha I. 1960: The stratigraphic re-evaluation of the microfauna from southern Slovakia in relation with the Paratethys deposits [Stratigrafické přehodnocení mikrofauny tzv. chatských vrstev na jižním Slovensku ve vztazích k sedimentům Paratethydy]. Geologické Práce 57, 159-216 (in Czech). Google Scholar

  • Cicha I. 1998: The Vienna Basin. In: Cicha I., Rögl F., Rupp C. & Ctyroka J. (Eds.): Oligocene-Miocene foraminifera of the Central Paratethys. Abhandlungen der senckenbergischen naturforschenden gesellschaft 549, 43-45. Google Scholar

  • Czepiec I. 1996: Sarmatian Foraminifera microfauna from the Carpathian Foredeep. Kwartlnik AGH, Geologia 23, 275-357. Google Scholar

  • Darakchieva S. 1989: Foraminiferal zonation of the Miocene in the Northeastern Bulgaria. Palaeontology, Stratigraphy and Lithology, Bulgarian Academy of Sciences 27, 31-43. Google Scholar

  • DeCelles P.G. & Giles K.A. 1996: Foreland basin systems. Basin Res. 8, 105-123. Google Scholar

  • Didkowski V.I. 1961: Neogene miliolids from the south-western part of the Russian Platform (Quinqueloculina and Triloculina genera) [Miliolidi neogenovikh pivdeno-zakhidnoi chastini rosiiskoi platformi (Rodi: Quinqueloculina to Triloculina)]. Gn. An. USRS, ser. stratigrafii to paleontologii, 39. Google Scholar

  • Filipescu S. 1996: Stratigraphy of the Neogene from the Western Border of the Transylvanian Basin. Studia Universitatis Babeş- Bolyai XLI, 2, 3-77. Google Scholar

  • Filipescu S. 2004: Anomalinoides dividens bioevent at the Badenian/ Sarmatian boundary-a response to paleogeographic and paleoenvironmental changes. Studia Universitatis Babes Bolyai, Geology 49, 2, 21-26. Google Scholar

  • Filipescu S. & Silye L. 2008: New Paratethyan biozones of planktonic foraminifera described from the Middle Miocene of the Transylvanian Basin (Romania). Geol. Carpath. 59, 6, 537-544. Google Scholar

  • Filipescu S., Popa M. & Wanek F. 1999: The significance of some Sarmatian faunas from the southwestern part of the Padurea Craiului Mountains (Romania). Acta Palaeontologica Romaniae 2 (2000), 163-169. Google Scholar

  • Filipescu S., Silye L. & Krézsek C. 2005: Sarmatian micropaleontological assemblages and sedimentary paleoenvironments in the Southern Transylvanian Basin. In: Csíki Z., Grigorescu D. & Lazăr I. (Eds.): Acta Palaeontologica Romaniae 5, 173-179. Google Scholar

  • Filipescu S., Miclea A., Gross M., Harzhauser M., Zágoršek K., Jipa C. 2014: Early Sarmatian paleoenvironments in the easternmost Pannonian Basin (Borod Depression, Romania) revealed by the micropaleontological data. Geol. Carpath. 65, 1, 67-81. Google Scholar

  • Fordinál K. & Zlinská A. 1998: Fauna of the upper part of Holíč Formation (Sarmatian) in Skalica (Vienna Basin) [Fauna vrchnej časti holíčskeho súvrstvia (sarmat) v Skalici (viedenská panva)]. Mineralia Slovaca 30, 137-146 (in Slovak). Google Scholar

  • Fordinál K., Zágoršek K. & Zlinská A. 2006: Early Sarmatian biota in the northern part of the Danube Basin (Slovakia). Geol. Carpath. 57, 2, 123-130. Google Scholar

  • Garecka M. & Olszewska B. 2011: Correlation of the Middle Miocene deposits in SE Poland and Western Ukraine based on foraminifera and calcareous nannoplankton. Annales Societatis Geologorum Poloniae 81, 309-330. Google Scholar

  • Gąsiewicz A., Czapowski G. & Paruch-Kulczycka J. 2004: The Badenian/ Sarmatian boundary in the northern part of the Pericarpathian foredeep based on the geochemical records in the sediments- stratigraphic implications [Granica baden-sarmat w zapisie geochemicznym osadów w północnej części zapadliska przedkarpackiego- implikacje stratygraficzne]. Przegląd Geologiczny 52, 5, 413-420 (in Polish). Google Scholar

  • Gonera M. 1997: Miocene foraminiferal asssemblages in the Gliwiec area (Upper Silesia, Poland). Bulletin of Polish Academy of Science, Earth Sciences 45, 2-4, 97-105. Google Scholar

  • Görög Á. 1992: Sarmatian foraminifera of the Zsámbék basin, Hungary. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös nominatae, Geologica 29, 31-153. Google Scholar

  • Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M. (Eds.): 2012. The Geological Time Scale 2012. Elsevier, Amsterdam, 2 volumes, 1-1144. Google Scholar

  • Grasu C., Miclăuș C., Brânzilă M. & Boboș I. 2002: The Sarmatian of the Foreland System Basin of the Eastern Carpathians [Sarmaţianul din sistemul bazinelor de foreland al Carpaţilor Orientali]. Tehnique Press, Bucuresti, 1-407 (in Romanian). Google Scholar

  • Grill R. 1941: Stratigraphische Untersuchungen mit Hilfe von Mikrofaunen im Wiener Becken und der benachbarten Molasse-Anteilen. Oel und Kohle 31, 595-602. Google Scholar

  • Gross M. 2006: Mittelmiozäne Ostracoden aus dem Wiener Becken (Badenium/Sarmatium, Österreich). Österreichische Akademie der Wissenschaften Schriftenreihe der Erdwissenschaftlichen Kommissionen special volume 1, 1-224. Google Scholar

  • Harzhauser M. & Piller W.E. 2004: Integrated stratigraphy of the Sarmatian (Upper Middle Miocene) in the western Central Paratethys. Stratigraphy 1, 1, 65-86. Google Scholar

  • Harzhauser M. & Piller W.E. 2007: Benchmark data of a changing sea - palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 8-31. Google Scholar

  • Harzhauser M., Kroh A., Mandic O., Piller W.E., Göhlich U., Reuter M. & Berning B. 2007: Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoologischer Anzeiger 246, 241-256. Google Scholar

  • Iljina L.B. 2000: On connection between basins of the Eastern Paratethys and adjacent seas in the Middle and Late Miocene. Stratigraphy and Geological Correlations 8, 300-305. Google Scholar

  • Ionesi B. 1968: The stratigraphy of the Miocene deposits between Siret Valley and Suceava Valley (Moldavian Platform) [Stratigrafia depozitelor miocene de platformă dintre Valea Siretului şi Valea Sucevei (Platforma Moldovenească)]. Academy Press, Bucuresti, 1-395 (in Romanian). Google Scholar

  • Ionesi B. 1991: The biozonation of the Sarmatian from the Moldavian Platform [Biozonarea Sarmaţianului din Platforma Moldovenească]. The celebration days of Alexandru Ioan Cuza University of Iasi (25-26, X, 1991), 25-26 (in Romanian). Google Scholar

  • Ionesi B. & Chintăuan I. 1974: The study of the ostracods from the Buglovian deposits from the Moldavian Platform (Siret Valley and Suceava Valley area) [Studiul ostracodelor din depozitele bugloviene de pe Platforma Moldovenească (regiunea dintre valea Siretului și valea Sucevei)]. Proceedings of the Geological Institut, Romania 60 (1972-1973), 4, 89-113 (in Romanian). Google Scholar

  • Ionesi B. & Chintăuan I. 1975: The study of the ostracods from the Volhinian deposits from the Moldavian Platform (Siret Valley and Moldova Valley area) [Studiul ostracodelor din depozitele volhiniene de pe Platforma Moldovenească (regiunea dintre valea Siretului și valea Moldovei)]. Proceedings of the Geological Institut, Romania 61 (1973-1974), 3, 3-14 (in Romanian). Google Scholar

  • Ionesi B. & Chintăuan I. 1978: The study of the ostracods from the Volhinian deposits from Moldavian Platform (Suceava Valley and Moldova Valley area) [Studiul ostracodelor din Volhinianul Platformei Moldovenești (regiunea dintre valea Sucevei și valea Moldovei)]. Anuarul Muzeului de Științe Naturale Piatra Neamț, Geologie-Geografie, 4, 205-225 (in Romanian). Google Scholar

  • Ionesi B. & Chintăuan I. 1994: Ostracofaune du Sarmatien de la Platforme Moldave. The Miocene from Transylvania Basin - Romania (Cluj Napoca), 81-96. Google Scholar

  • Ionesi B. & Enache-Bouau M. 1987: Contributions à l’étude microfaunique du Badénien (region Crivineni-Pătârlagele). Romanian Magazine of Geology and Geography 31, 95-102. Google Scholar

  • Ionesi B. & Guevara I. 1993: The study of the Sarmatian deposits from 1002 Bădeuți core (north-western part of the Moldavian Platform) [Studiul depozitelor sarmaţiene din forajul 1002 Bădeuţi (NV Platformei Moldoveneşti)]. Geological Bulletin of Romanian Society 14, 79-87 (in Romanian). Google Scholar

  • Ionesi B. & Ionesi L. 1968: Contributions to the knowledge of the Buglovian between Siret Valley and Suceava Valley (Moldavian Platform). Scientific Annals of Alexandru Ioan Cuza Univeristy of Iasi, Geology-Geography 14, 69-78. Google Scholar

  • Ionesi L. 1994: The geology of the platform units and of the North-Dobrogean Orogene [Geologia unităţilor de platformă şi a Orogenului Nord-Dobrogean]. Tehnique Press, Bucuresti, 1-280 (in Romanian). Google Scholar

  • Ionesi L. & Ionesi B. 1981: New data on the Sarmatian deposits from the north-eastern part of the Moldavian Platform (Hudești-Mitoc) [Date noi asupra depozitelor Sarmaţiene din partea de nord est a Platformei Moldoveneşti (Hudeşti-Mitoc)]. Romanian Academy Press: The Memoirs of the Scientific Section 4, 337-351 (inGoogle Scholar

  • Romanian). Google Scholar

  • Ionesi L. & Ionesi B. 1982: Contributions à l’étude du Buglovien d’entre Baseu et Prut (Platforme Moldave). Scientific Annals of the Alexandru Ioan Cuza Univeristy of Iaşi 2, 29-38. Google Scholar

  • Ionesi L., Ionesi B., Roşca V., Lungu A. & Ionesi V. 2005: Middle and Upper Sarmatian from the Moldavian Platform [Sarmaţianul Mediu şi Superior din Platfoma Moldovenească]. Romanian Academy Press, Bucuresti, 1-557 (in Romanian). Google Scholar

  • Ionesi V. 2006: The Sarmatian between the Siret Valley and Big Șomuz Valley [Sarmaţianul dintre Valea Siretului şi Valea Şomuzului Mare]. Alexandru Ioan Cuza Univeristy of Iaşi Press, 1-238 (in Romanian). Google Scholar

  • Jiříček R. 1972: Das Problem der Grenze Sarmat/Pannon in dem Wiener Becken, dem Donaubecken und dem ostslowakischen Becken [Problém hranice Sarmat/Panon ve Vídeňské, Podunajské a Východoslovenské pánvi]. Mineralia Slovaca 14, 4, 39-81 (in Slovak with German summary). Google Scholar

  • Jiříček R. 1983: Redefinition of the Oligocene and Neogene Ostracod Zonation of the Paratethys. Miscellanea Micropaleontology. A memorial volume dedicated to the 18th European Colloquium on Micropaleontology, 195-236. Google Scholar

  • Jiříček R. & Říha J. 1991: Correlation of Ostracod Zones in the Paratethys and Tethys. Saito Ho-on Kai Special Publications ( Proceedings of Shallow Tethys) 3, 435-457. Google Scholar

  • Koiava K. 2006: The biostratigraphy of Sarmatian deposits of Eastern Georgia on the base of Foraminifera. PhD thesis, Alexandre Djanelidze Institute of Geology, Tbilisi, 1-163 (in Georgian). Google Scholar

  • Kollmann K. 1960: Cytherideinae und Schulerideinae n. subfam. (Ostracoda) aus dem Neogen des ostl. Oesterreich. Mitteilungen der Geologischen Gesellschaft in Wien 51 (1958), 89-195. Google Scholar

  • Koubová I. & Hudáčková N. 2010: Foraminiferal successions in the shallow water Sarmatian sediments from the MZ 93 borehole (Vienna Basin, Slovak part). Acta Geologica Slovaca 2, 1, 47-58. Google Scholar

  • Kováč M. 2000: Geodynamic, paleogeographic and structural development of the Carpatho-Pannonian region during the Miocene: new view on the Neogene basins of Slovakia. Veda, Bratislava, 1-204. Google Scholar

  • Kováč M., Andreyeva-Grigorovich A.S., Brzobohatý R., Fodor L., Harzhauser M., Oszczypko N., Pavelić D., Rögl F., Saftić B., Sliva U., Stráník Z. 2003: Karpatian paleogeography, tectonics and eustatic changes. In: Brzobohatý R., Cicha, I., Kováč M. & Rögl F. (Eds.): Karpatian - a Lower Miocene stage of the CentralGoogle Scholar

  • Paratethys. Masaryk University Press, Brno, 49-72. Google Scholar

  • Kováč M., Andreyeva-Grigorovich A., Bajraktarević Z., Brzobohatý R., Filipescu S., Fodor L., Harzhauser M., Nagymarosy N., Oszczypko N., Pavelić D., Rögl F., Saftić B., Sliva U., Studencka B. 2007: Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geol. Carpath.58, 579-606. Google Scholar

  • Kováčová P. & Hudáčková N. 2009: Late Badenian foraminifers from Vienna Basin (Central Paratethys): stable isotope study and paleoecological implications. Geol. Carpath. 60, 1, 59-70. Google Scholar

  • Kováčova P., Laurent E., Hudáčková N. & Renard M. 2009: Central Paratethys paleoenvironment during the Badenian (Middle Miocene): evidence from foraminifera and stable isotope (δ13C and δ18O) study in the Vienna Basin (Slovakia). Int. J. Earth Sci. 98, 1109-1127. CrossrefGoogle Scholar

  • Krzywiec P., Wysocka A., Oszczypko N., Mastalerz K., Papiernik B., Wróbel G., Oszczypko-Clowes M., Aleksandrowski P., Madej K. & Kijewska S. 2008: Evolution of the Miocene deposits of the Carpathian Foredeep in the vicinity of Rzeszów (The Sokołów-Smolarzyny 3D seismic survey area). Przegl. Geol. 56, 232-244.Google Scholar

  • Laskarew W. 1903: Die Fauna der Buglowka-Schichten in Volhynien [Fauna buglovskikh sloev Volini]. Trudy Geol. Kom., Nov. Ser. 5, 1-127 (in Russian with German summary). Google Scholar

  • Lelek D., Oszczypko-Clowes M. & Oszczypko N. 2010: Some remarks of the biostratigraphy and paleoecology of the Middle Miocene Machów Formation (Carpathian Foredeep, Poland). In: Chatzipetros A., Melfos V., Marchev P. & Lakova I. (Eds.): Geologica Balcanica, Abstracts volume 39, 1-2, 228-229.Google Scholar

  • Loghin S.A. 2014: Sarmatian ostracods from the Preutesti area Suceava county Romania (Moldavian Platform). 5th International Students Geological Conference, April 24-27, 2014 Budapest, Hungary, Eotvos Lorand University. Acta Mineralogica Petrographica, Abstract Series 8.Google Scholar

  • Łuczkowska E. 1964: The micropaleontological stratigraphy of the Miocene in the region of Tarnobrzeg-Chmielnik. Prace Geologiczne Komisji Nauk Geologicznych PAN, Oddzial w Krakowie 20, 1-52. Google Scholar

  • Łuczkowska E. 1967: Some new species of Foraminifera from the Miocene of Poland. Rocznik Polskiego Towaeyzstwa Geologicznego 37, 2, 233-241. Google Scholar

  • Łuczkowska E. 1971: A new zone with Praeorbulina indigena (Foraminiferida, Globigerinidae) in the Upper Badenian (Tortonian s.s.) of Central Paratethys. Rocz. Pol. Tow. Geol. XL, 3, 4, 445-448. Google Scholar

  • Łuczkowska E. 1972: The stratotype and the facies of the Sarmatian deposits from the coast area Roztoczu Lubelskim [Facjostratotyp sarmatu facji przybrzeznej na Roztoczu Lubelskim]. Sprawozdania z Posiedzeń Komisji Naukowych PAN, Oddzial w Krakowie 16, 224-226 (in Polish). Google Scholar

  • Łuczkowska E. 1974: Miliolidae (Foraminiferida) from Miocene of Poland. Part II. Biostratigraphy, Paleoecology and Systematics. Acta Paleontologica Polonica 19, 1, 1-176. Google Scholar

  • Martini E. 1971: Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. In: Proceedings of the II Planktonic Conference. Roma, 739-785. Google Scholar

  • Miclăuș C., Ionesi V., Anistoroae A., Loghin S. & Dumitriu S. 2015: Biostratigrapy and sedimentology of the Sarmatian deposits from Șomuzul Mare and Șomuzul Mic drainage basins. In: Tenth Romanian Symposum on Paleontology. Cluj University Press, Cluj-Napoca, 70-71. Google Scholar

  • Nevesskaja L.A., Popov S.V., Goncharova I.A., Iljina L.B., & Paramonova N.P. 2006: Accelerated evolution of the Eastern Paratethys mollusks under condition of Decreased competition. In: Rozhnov S.V. (Ed.): Evolution of Biosphere and Bioorigins. Nauka Press, Moscow, 334-358 (in Russian). Google Scholar

  • Ney R. 1968: The role of the “Cracow Bolt” in the geological history of the Carpathian Foredeep and in the distribution of oil and gas deposits. Prace Geologiczne PAN 45, 1-82. Google Scholar

  • Ney R., Burzewski W., Bachleda T., Gorecki W., Jakobczak K., Slupeczynski K. 1974: Outline of paleogeography and evolution of lithology and facies of Miocene layers on the Carpathian Foredeep. Prace Geologiczne Komisji Nauk 82, 1-65. Google Scholar

  • Odrzywolska-Bieńkowa E. 1966: Micropaleontological stratigraphy of the Miocene in the north-eastern margin of the Carpathian Foredeep. Kwartalnik Geologieczny 10, 432-441. Google Scholar

  • Odrzywolska-Bieńkowa E. 1972: Micropaleontological stratigraphy of the younger Tertiary in the borehole Dywola, Roztocze area. Kwartalnik Geologiczny 16, 669-675. Google Scholar

  • Odrzywolska-Bieńkowa E. 1974. The results of micropaleontological studies on the Miocene drillings in the Stopnica area (Central Poland). Kwartalnik Geologiczny 22, 2-3, 81-83 (in Polish with English summary). Google Scholar

  • Odrzywolska-Bieńkowa E. 1975: The stratigraphy and the micropaleontology of the Miocene from the Central part of the Carpathian foredeep [Stratzgrafia micropaleontologiczna Miocenu w Centralny czesci zapadliska przedkarpackiego]. Przeglad Geologiczny 23, 12, 597-602 (in Polish). Google Scholar

  • Olszewska B. 1999: Biostratigraphy of Neogene in the Carpathian Foredeep in the light of new micropaleontological data. Prace Państwowego Instytutu Geologicznego 168, 9-28. Google Scholar


  • After a quick break to take the dog for a walk (“Not a euphemism,” as British comedian Miranda Hart would add), we had resumed our journey south on the New Jersey Turnpike when something on the car’s stick shift caught my eye – a cricket.  A jumping bush cricket (Orocharis saltator), if I’m not mistaken (though I may well be – mixing uninformed amateurs and identification guides, such as Thomas Walker’s fun and useful Singing Insects of North America, often leads to foolishness).  I suggested that my wife take a look; she did, offering only a mild sound of disapproval.  With a tissue, she gingerly pried the little beast off the stick shift and tried to shake it out of an open window.  Of course, given the air flow around the car, the cricket headed straight for the back seat where it rode in some comfort (I assume) for another two hundred miles (though part of a leg had been lost in the encounter with the tissue).


    Given this insect’s body plan and structure, even the alternative of being blown out of the car into the wilds of the Turnpike and the rest of New Jersey was not necessarily an immediate death sentence.  Small size, exoskeleton (keeping the necessary, good parts encased in a skeleton), and wings spelled odds of survival that were not too bad.  Insects are ancient survivors for some very good reasons.

    My current thinking about insects – their shapes, structures, behaviors, evolution, complexity, and beauty – has been informed by entomologist Scott Richard Shaw’s engrossing new book, Planet of the Bugs:  Evolution and the Rise of Insects (2014).  The prose in this book is graceful and the scientific content accessible, though still substantive.  All in all, a pleasure.



    For me, by far the most exciting and fulfilling aspect of the book has to do with a simple, though fundamental question about insects, a question I’d never been smart enough to formulate.  Think on the earthbound caterpillar munching on a milkweed plant and the highflying Monarch Butterfly that it will become, and ask, “Why does that happen?”  Indeed, why do more than three-quarters of all modern insects undergo such a complete and complex metamorphosis in their lives?

    Because it meant and means survival.  Complete metamorphosis, which first arose among insects in the Permian Period (299 – 252 million years ago), allows the young larvae to be “stunningly different from adults.”  Shaw asserts it “may arguably be the single more important factor in the insects’ long-term success . . . .”  (p. 104)  It accomplishes many different things.  First, this “remarkable innovation . . . allowed adult insects to avoid competing with their own offspring for food.”  (p. 14)  The animals’ tasks at these stages are dramatically different – the larvae eat and grow, the adults mate and reproduce.  It may have been prompted by the different species’ need to protect their wings.  This kind of metamorphosis allows for the development and growth of these crucial and delicate appendages with some protection during the transitional stage from larva to adult.  It also provides “diverse resting stages [during the life cycle] for escaping difficult environmental conditions.”  (p. 105)  That last may have played a key role in enabling insects to shrug off most past mass extinctions.  Insects took their most significant hit in the mass extinction at the end of the Permian, some 252 million years ago, but “virtually all the orders with complete metamorphosis survived . . . .”  Many others with less complete metamorphosis did as well.  (p. 111)

    Shaw tells the tale of the evolution of life on this planet from a markedly distinct point of view, that of the insect.  In doing so, he stresses that he is offering a necessary counterpoint to the human-centric way in which the evolutionary story is often told.  (Indeed, we humans are displaced, though not missing, in this account.)  It’s largely a chronological telling, a journey from the Cambrian to the present, in which he describes the evolutionary path that insects have followed.  This is a story he tells well, covering the ground with a sure hand, freshness, and a sense of humor.

    His insect-centric view point is totally appropriate.  The class Insecta is, after all, one of the planet’s greatest success stories with nearly a million known and named species, and many millions more unknown. Insects clearly have done well over hundreds of millions of years of evolution.  The first true insect appeared on land during the Devonian, some 400 million years ago.  The basic insect body plan apparently leaves little to be desired – three-part body with a head (housing brain, eyes, antennae, and mouth), thorax from which six legs extend (a pair from each thoracic segment, and wings, if appropriate), and abdomen (everything else is found there, most of the bodily systems – no wonder a squashed insect abdomen is mostly goo).  Having the skeleton on the outside offers protection for precious organs.  In addition, small size is an insect virtue, the truly big insects have gone extinct.  Such smallness “allows bugs to divide the world into exceedingly small niches (p. 12),” and weather many storms that have taken out other animals.

    Focus for a moment on that hallmark of the prototypical insect – six legs.  Reflective of his approach to this story, Shaw posits that six-legged locomotion is the best of all possible arrangements.  In a section he labels “Two Legs Bad, Six Legs Good,” he lays out his argument.  It proceeds partly from numbers:  the many millions of insect species with hundreds of millions of years to experiment with alternatives are, almost without exception, hexapods.  “Six-legged form is sublime.  Fifty million insect species can’t possibly have it wrong.”  (p. 62)  And, lest we think that humans might have gotten onto something good with bipedalism, he concludes, “Two-legged bipedal locomotion is so unstable and difficult to master that it seems highly improbable and almost pointless.”  (p. 61)

    Among insects’ great accomplishments is flight.  They were the first organisms to take to the air, stretching their wings initially in the early Carboniferous, some 327 million years ago, and monopolizing flight for the ensuing 150 million years.  Reflective of Shaw’s informative consideration of the hows and whys of insect evolution is his treatment of the development of wings and flight.  He’s not fond of the hypothesis that the attraction of tastier parts higher up plants got insects out of the soil to a jumping off point for flight.  Rather, he offers an array of other possibilities:  insects may have first climbed plants to gain some warmth with wings themselves favored by selection because they acted like “little solar panels” to warm these cold-blooded organisms, and, also, wings offered a canvas for colors and patterns to fuel courtship and mating, to camouflage their bearers, or to warn off predators.  Speaking of predators, flight itself might have been selected for because it offered a means of escape from predators (a recurrent theme in any evolutionary story), or a way to spread the wealth and colonize large areas.

    In Shaw’s capable hands, even the kind of parasitism practiced by many wasp and fly species, a particularly nasty behavior that first appeared in the Jurassic Period (201 - 145 million years ago) and earns its practitioners the label “parasitoid” (that is, an organism which ultimately kills its host), becomes a source of wonder at the inventiveness of the evolutionary process.  Shaw actually approaches the subject with a degree of humor, labelling the main discussion “Which Way to Eat an Oreo:  Two Kinds of Parasitism”.  Of these two approaches, external and internal parasitism, the latter is practiced with an astoundingly rich array of lethal variations across species.  I wont get into the details of any of these many fascinating ways to slowly kill a host, but I am reminded of how the parasitic behavior of the Ichneumonidæ family of wasps led Charles Darwin to write,
    I cannot persuade myself that a beneficent & omnipotent God would have designedly created the Ichneumonidæ with the express intention of their feeding within the living bodies of caterpillars, or that a cat should play with mice.  (Letter to botanist Asa Gray written on May 22, 1860.)
    Nevertheless, when Shaw puts the parasitoids into an evolutionary context, one can appreciate the behavior.
    The Jurassic parasitoids didn’t just find a new protein-rich meal, they narrowed their ecological niches to smaller dimensions than those of any previous predatory animals and in doing so allowed their descendants to live in a multitude of previously unoccupied microscopic niches.  From that time onward, parasitoids dominated the diversity of terrestrial communities, and by their selective killing behaviors they shaped the richness and abundance of both the insect and plant communities.  (p. 136)
    The preeminence of insects on this planet is clear.  As Shaw puts it, “Whether or not they rule the planet, insects certainly have largely overrun it.”  (p. 3)  He reaches somewhat further afield when he considers the possibility of complex forms of life elsewhere in the universe.  Very likely to be insect-based, of course.  As he puts it,
    The buggy universe hypothesis is verifiable and has already passed one test:  this planet is observed to be astronomically full of bugs.  We can easily image other pathways by which life on earth might have evolved without any humans, or even without any mammals or dinosaurs, but given the unfolding of the earth’s history as we understand it, it’s difficult to imagine how terrestrial ecosystems could have evolved without insects or insectlike creatures.  (p. 191)
    He takes seriously the comment ascribed to biologist J.B.S. Haldane that, considering nature, one has to conclude that the Creator has, “[a] n inordinate fondness for beetles.”  For “beetles,” think “insects” and, for Shaw, the species numbers come up trumps again.  For believers in a Creator, the logic holds that the creation of one “buggy planet” (Earth) probably means “he would have made other planets buggy as well.”  (p. 193)

    Finally, I have to add that, thankfully, Shaw avoids the trap that ensnares many writer of popular natural history – the first person narrative in which the author becomes the story’s hero.  Only on occasion for me does such a book succeed, more often not.  Shaw interjects himself into the narrative only sporadically and mostly to good effect.

    So, yes, I'd say I like the book.

    0 thoughts on “Cenozoic Calcareous Nannoplankton Classification Essay”

      -->

    Leave a Comment

    Your email address will not be published. Required fields are marked *